${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ Coupling Constants in Carbocations. 7. ${ }^{1}$ Application of the ΔJ Equation to Polycyclic Systems Including Bicyclo[2.2.1]hept-2-yl Cations

David P. Kelly, Kathryn Aherne, Florencio Delgado, Joseph J. Giansiracusa, Wendy A. Jensen, Kelly Karavokiros, Robert A. Mantello, and Monica E. Reum
Contribution from the School of Chemistry, The University of Melbourne, Parkville, Victoria 3052, Australia

Received June 14, 1993*

Abstract

One-bond ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling constants have been measured for the polycyclic carbocations 2 -methylbicyclo[2.2.2]octyl (10), 2-arylbicyclo[2.2.2]octyl (11), 3-arylbicyclo[3.2.1]octyl (15), 8-methyltricyclo[5.2.1.0 ${ }^{2.6}$]decyl (23), 2-methyl-5,6-benzobicyclo[2.2.1] heptyl (25), 2-arylbicyclo[2.2.1]heptyl (27), 2-methyltricyclo[3.3.1.1 ${ }^{3.7}$]decyl (17), and 2 -aryltricyclo[3.3.1.1 ${ }^{3.7}$]decyl (18). Comparisons with the corresponding ketones provided ΔJ values consistent with classical cations for $10,11,15,23$, and 25 . In the case of 17 and 18 the low ΔJ values suggest that 2 -adamantyl cations are distorted significantly from sp^{2} toward sp^{3} hybridization. $\Delta J_{\mathrm{C}_{1} \mathrm{H}}$ values for 27 give an excellent linear correlation with σ^{+}, with no deviation at high electron demand. For the parent 2 -norbornyl cation (28), exceptionally high values for ΔJ are consistent with a nonclassical σ-bridged structure in superacid.

Introduction

The ΔJ equations (1) and (2), which relate the one-bond ${ }^{13} \mathrm{C}$ ${ }^{1} \mathrm{H}$ coupling constant of a group adjacent to a positive charge in a carbocation to the amount of charge and to the dihedral angle between the $\mathrm{C}-\mathrm{H}$ orbital and the vacant p_{π} orbital, ${ }^{2,3}$ have been used successfully to determine the structures of acyclic, cyclic, and bicyclic cations generated in superacids. ${ }^{2-6}$

$$
\begin{gather*}
\Delta J=22.5-33.1 \cos ^{2} \theta \tag{1}\\
\Delta J=\left(1+0.6 \sigma^{+}\right)\left(10.9-14.3 \cos ^{2} \theta\right) \tag{2}
\end{gather*}
$$

In the case of internal cyclopropylcarbinyl cations, e.g. bicyclo[4.1.0]heptyl systems, it allowed the determination of the structure of the rearranged ion from $1,6-$ methano[10]annulene. ${ }^{1.4}$ The value of 24 Hz for $\Delta J_{\mathrm{C}_{2} \mathrm{H}}$ of this cation (1) is consistent with a 90° dihedral angle for $\mathrm{C} 2-\mathrm{H}$ and a static bisected, cyclopropylcarbinyl structure. In equilibrating classical systems, ΔJ for the group adjacent to the equilibrating center, e.g. C1 in 2 , is approximately half that predicted by eq 1 for static cations as a result of sharing of the positive charge between C 2 and C 3 .

3
In dialkyl aryl cations, ΔJ is sensitive to the amount of charge at the adjacent carbon as measured by σ^{+}in eq $2 .{ }^{3}$ Replacing

[^0]a methyl group by a phenyl group at the cationic center decreases the ΔJ value by approximately one half. In the case of the 3 -aryl-3-nortricyclyl cations $3, \Delta J$ for $\mathrm{C}_{2} \mathrm{H}\left(\theta=90^{\circ}\right)$ varies from 5 Hz for $\mathrm{R}=4-\mathrm{OCH}_{3}$ to 16 Hz for $\mathrm{R}=3,5-\left(\mathrm{CF}_{3}\right)_{2}$, compared to 22 Hz for the 3-methyl-3-nortricyclyl cation. ${ }^{2}$

Despite claims to the contrary, ${ }^{7,8}$ the equation has been useful in distinguishing between classical and nonclassical cations, as has been demonstrated in the case of π - and $\pi \sigma$-bridged cations. ${ }^{5}$ For the π-bridged 7 -norbornenyl cations, e.g. 4,9 the J_{CH} values show large enhancements at both the bridging and bridgehead carbons over those for 7 -norbornenone, e.g. $4 \mathfrak{a} \Delta J_{(1,4)}=20 \mathrm{~Hz}$,

b $\mathrm{R}=\mathrm{CH}_{3}$

4

5

6
$\Delta \boldsymbol{J}_{(2,3)}=19 \mathrm{~Hz}{ }^{.}$Classical, static or equilibrating structures for these cations can be excluded on both chemical shift and CH coupling grounds. A static structure is excluded by the observed symmetry (5 resonances for 4 b) and the δ values, ${ }^{9}$ and equilibration between two tricyclic structures formed by C7-C2 or C7-C3 bonding would reduce the value of J_{CH}. Theoretically computed values for 4 a and 5 underestimate $J_{\mathrm{C}_{1}, 4 \mathrm{H}}$ by $4-10 \mathrm{~Hz}$ and overestimate $J_{\mathrm{C}_{3} \mathrm{H}}$ by $6-10 \mathrm{~Hz}$. Nevertheless, the theoretical values were considered to be an "attractive fit". ${ }^{10}$ Additional evidence for the formation of the π-bridge in 4 c is provided by both X-ray ${ }^{11}$ (which shows the C1-C7-C4 bridge canted toward $\mathrm{C} 2-\mathrm{C} 3$) and IGLO chemical shift calculations. ${ }^{12}$

For the $\pi \sigma$-bridged, trishomocyclopropenium systems of general structure 6, ΔJ values range from 21 to 32 Hz at the bridge positions ($\mathrm{C} 1,3,5$) and from 18 to 27 Hz at the adjacent carbons ($\mathrm{C} 2,4,6$). These values are consistent neither with equilibrating classical nor static classical cations. The high values of ΔJ are,

[^1]however, consistent with the proposition that π - and $\pi \sigma$-bridging result in increased internal strain and increased s-character of the involved $\mathrm{C}-\mathrm{H}$ bonds. ${ }^{5}$

Bicyclo[2.1.1]hexyl cations are reported to have thermodynamic and spectroscopic properties intermediate between those of classical (cyclopentyl) and nonclassical (2-norbornyl) cations. ${ }^{13}$ The J_{CH} values for the secondary (7and 8) and tertiary (9) cations

7

8

9
and the corresponding ketone ${ }^{5}$ have been measured. ${ }^{14}$ For the secondary cation, the ΔJ values obtained are 17 Hz for the averaged methylene carbons ($\mathrm{C} 3,5,6$) and 24 Hz at the bridging C 1 and C 2 . These values are greater than those predicted for a classical equilibrating system (7), where the values should be less than those for a static, classical system. The tertiary cation 9, with $\delta \mathrm{C}^{+}=322$ and no J_{CH} value greater than 176 Hz , is such a cation. ΔJ for C 3 is zero, consistent with $\theta=30^{\circ}$, but for Cl it is only 16 Hz , somewhat reduced from the expected value of 22 Hz for $\theta=90^{\circ} .{ }^{15}$ Thus for the secondary cations 7, equilibration would result in a value of $8-11 \mathrm{~Hz}$ for Cl of 8 , which is clearly not the case, the observed value of 24 Hz being similar to that observed in the parent trishomocyclopropenium cation. ${ }^{5}$ Application of this ΔJ criterion to the bicyclo[2.1.1]hexyl system lends support to a σ-bridged structure for the secondary cation as do the results of ab initio calculations and isotopic perturbation of resonance. ${ }^{16}$ Equilibrating structures have also been ruled out as intermediates in the solvolysis of the secondary brosylate and diazonium ion by the ${ }^{2} \mathrm{D},{ }^{13} \mathrm{C}$ doublelabeling experiments of Kirmse and co-workers. ${ }^{17}$ However, the intermediate in the solvolysis of 1,2 -dimethyl-2-bicyclo[2.1.1]hexyl p-nitrobenzoate was shown to be a pair of equilibrating classical cations similar to $2 .{ }^{17} J_{\mathrm{CH}}$ values for this cation are not available. ${ }^{13}$

We now report results of the application of the ΔJ equation to some other polycyclic systems, 2-bicyclo[2.2.1]heptyl (2norbornyl), 2-bicyclo[2.2.2]octyl, 3-bicyclo[3.2.1]octyl, and 2-tricyclo[3.3.1.1 ${ }^{3,7}$]decyl (2-adamantyl) cations.

Results and Discussion

Bicyclo[2.2.2]octyl and Bicyclo[3.2.1]octyl Cations. Ionization of 2-methylbicyclo[3.2.1] octan-2-ol in superacid at $-80^{\circ} \mathrm{C}$ yields not the corresponding tertiary cation ${ }^{18}$ but the rearranged 2-methylbicyclo[2.2.2]octyl cation (10). ${ }^{19}$

Comparison of ${ }^{1} J_{\mathrm{CH}}$ values (Table I) with those of bicyclo-[2.2.2]octan-2-one (12) yields ΔJ values of $16,-1$, and 5 Hz for
(13) Schmitz, L. R.; Sorensen, T. S. J. Am. Chem. Soc. 1980, 102, 16451648.
(14) (a) Olah, G. A.; Liang, G.; Jindal, S. P. J. Am. Chem. Soc. 1976, 98, 2508-2511. (b) Seybold, G.; Vogel, P.; Saunders, M.; Wiberg, K. B. J. Am. Chem. Soc. 1973, 95, 2045-2047.
(15) Sorensen has proposed that a pair of unsymmetrical, σ-bridged equilibrating cations are consistent with the data, see ref 13.
(16) Schleyer, P.v. R.; Laidig, K.; Wiberg, K. B.;Saunders, M.; Schindler, M. J. Am. Chem. Soc. 1988, 110, 300-301. The potential energy surface of the secondary cation is "quite flat", with an energy difference of only 3-4 $\mathrm{kcal} / \mathrm{mol}$ in favor of 8 . For the 2-norbornyl cation, the stabilization energy of bridging in the nonclassical structure 28 has been calculated to be in the $10-15 \mathrm{kcal} / \mathrm{mol}$ range. This may be interpreted as indicating that σ-bridging is not as well developed in 8 as in 28, with less internal strain and thus lower ΔJ values for $\mathrm{Cl}, \mathrm{C} 2$ (24 Hz compared with 44 Hz for 28). The IGLO calculations give a more clear-cut distinction between 7 and 8 . The ΔJ criterion, like most other criteria used to differentiate between classical and nonclassical cations, is thus not absolutely unequivocal.
(17) Kirmse, W.; Zellmer, V.; Goer, B. J. Am. Chem. Soc. 1986, 108, 4912-4917.
(18) Olah, G. A.; Liang, G.; Wiseman, J. R.; Chong, J. A. J. Am. Chem. Soc. 1972, 94, 4927-4932.
(19) Kirchen, R. P.; Sorensen, T. S. J. Am. Chem. Soc. 1978, 11, 14871494.
$\mathrm{Cl}, \mathrm{C} 3$, and CH_{3} respectively. ${ }^{5}$ The value of 16 Hz is approximately 5 Hz lower than that predicted by eq $1\left(\theta=90^{\circ}\right)$ and is not a result of second-order effects, since ${ }^{1} J_{\mathrm{C}_{1} \mathrm{H}}$ for $\mathbf{1 0}$ is

10

11
the same at different field strengths. The bicyclo[2.2.2]octyl skeleton should be relatively rigid; ${ }^{19}$ nevertheless, the low value of ΔJ may reflect a distortion from the expected geometry ($\theta<$ 90°) as proposed also for 9. 2-Arylbicyclo[2.2.2]octyl cations ${ }^{20}$ should show reduced values of ΔJ according to eq 2 . For a limited range of these cations, this is indeed the case, $J_{\mathrm{C}_{1} \mathrm{H}}$ increasing from 142 Hz for the coumaranyl cation (11a) to 145 Hz for the 3 '-chloro derivative 11f (Table I). Data for the cations with strongly withdrawing substituents (11 h and 11 i) were unobtainable from the mixture of cations produced at $c a .-80^{\circ} \mathrm{C}$. Previous ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR studies of 2-arylbicyclo[2.2.2]octyl, 2-arylbicyclo[3.2.1]octyl, and 6-arylbicyclo[3.2.1]octyl cations bearing electron-withdrawing substituents have shown that equilibrium mixtures of cations are formed at $-60^{\circ} \mathrm{C}$ from any one of the precursors. ${ }^{21}$

Scheme I

16
5

12

Table I. ${ }^{13} \mathrm{C}$ NMR Parameters for Carbocations and Model Ketones ${ }^{a}$

cation	Cl	C2	C3	C4	C5	C6	C7	C8	C9	C10	aryl	CH_{3}
10	$67.2{ }^{\text {b }}$	322.1	59.0	36.4	23.9	30.9	23.9	30.9				39.5
	d, 156		t, 128	d, 143	t. 134	t, 142	t, 134	t, 142				q, 132
11a	40.0	230.3	42.5	28.9	24.7	26.5					$135.9\left(\mathrm{Cl}^{\prime}\right), 136.3$ (166, C2'),	79.7, 27.4
	d, 142		t, 128	d, 139	t, 131	t, 126					$\begin{aligned} & 132.5\left(\mathrm{C}^{\prime}\right), 184.1\left(\mathrm{C}^{\prime}\right), \\ & 115.6\left(176,5^{\prime}\right), \\ & 145.6\left(167, \mathrm{C}^{\prime}\right) \end{aligned}$	
11b ($\mathrm{R}=4^{\prime}-\mathrm{OCH}_{3}$)	40.7	237.7	42.8	28.9	24.7	26.8					131.6 (C1'), 143.4, 143.7	59.5
	d, 143		t, 128	d, 139	t. 133	t, 126					$\begin{aligned} & \left(\mathrm{C2}^{\prime}, 6^{\prime}\right), 118.7,120.3 \\ & \left(\mathrm{C}^{\prime}, 5^{\prime}\right), 181.8^{(}\left(\mathrm{C}^{\prime}\right) \end{aligned}$	q, 150
11c (R $\left.=4^{\prime}-\mathrm{CH}_{3}\right)$	45.3	262.0	46.5	30.8	25.3	28.9					$136.0\left(\mathrm{Cl}^{\prime}\right), 139.6$ (167,	25.3, q
	d, 144		t, 128	d, 137	t, 129	t, 125					$\begin{aligned} & \left.\mathbf{C 2}^{\prime}, 6^{\prime}\right), 134.1(170, \\ & \left.\mathbf{C 3}^{\prime}, 5^{\prime}\right), 172.4\left(\mathbf{C 4}^{\prime}\right) \end{aligned}$	
11d $\left(\mathrm{R}=4^{\prime}-\mathrm{Cl}\right)$	47.8	269.7	48.1	31.4	24.7	28.9					$136.3\left(\mathrm{Cl}^{\prime}\right), 139.8$ (169,	
	d, 145		t, 128	d, 138	t, 133	t, 126					$\begin{aligned} & \left.C 2^{\prime}, 6^{\prime}\right), 133.5(175, \\ & \left.C 3^{\prime}, 5^{\prime}\right), 163.3\left(4^{\prime}\right) \end{aligned}$	
11e ($\mathrm{R}=\mathrm{H}$)	47.5	273.1	48.4	31.1	24.7	28.9					$138.0\left(\mathrm{Cl}^{\prime}\right)$, 139.4 (168,	
	d, 145		t, 128	d, 136	t, 130	t, 126					$\begin{aligned} & \left.\mathrm{C} 2^{\prime}, 6^{\prime}\right), 132.9(169, \\ & \left.\mathrm{C} 3^{\prime}, 5^{\prime}\right), 154.1\left(171, \mathrm{C} 4^{\prime}\right) \end{aligned}$	
$11 \mathrm{f}\left(\mathrm{R}=3^{\prime}-\mathrm{Cl}\right)$	50.7	278.8	49.6	32.3	24.6	29.8					139.3 (Cl^{\prime}), 136.7 (169, $\mathrm{C2}^{\prime}$),	
	d, 145		t, 128	d, 137	t, 131	t, 129					$138.7\left(\mathbf{C}^{\prime}\right), 152.2(171,$	
											C5'), 137.6 (169, ${ }^{\text {c }}{ }^{\prime}$)	
$11 \mathrm{~h}^{\boldsymbol{c}}\left(\mathrm{R}=4^{\prime}-\mathrm{CF}_{3}\right)$	52.3	285.1	51.5	33.4	24.8	30.8						
12	44.2	218.0	44.8	27.9	23.3	24.7	23.3	24.7				
	d, 141		t, 129	d, 136	t, 132	t, 132	t, 132	t, 132				
13	35.3	50.4	212.4			29.4		37.8				
	d, 135	d,d				t, 132		t. 133				
		129, 132										
15b (R = $\left.\mathbf{4}^{\prime}-\mathrm{OCH}_{3}\right)$	40.1	45.5	226.0	45.5	40.1	29.9	29.9	39.0			$135.0\left(\mathrm{Cl}^{\prime}\right), 144.5$,	59.9
	d, 141	d,d		d,d	d, 141	t, 133	t, 133	t, 132			($\left.\mathrm{C2}^{\prime}, 6^{\prime}\right), 118.6$	q, 151
		130, 134		130, 134							($\left.\mathrm{C3}^{\prime}, 5^{\prime}\right), 182.8\left(\mathrm{C4}^{\prime}\right)$	
15c (R = $\left.4^{\prime}-\mathrm{CH}_{3}\right)$	40.3	49.3	252.2	49.3	40.3	30.6	30.6	38.4			$139.5\left(\mathrm{Cl}^{\prime}\right), 140.5\left(\mathrm{C}^{\prime}, 6^{\prime}\right)$	25.0
	$\mathrm{d}, 141$	d,d		d,d	$\text { d, } 141$	$\mathfrak{t}, 132$	$\mathfrak{t}, 132$	$\mathfrak{t}, 131$			$134.0\left(\mathbf{C 3}^{\prime}, 5^{\prime}\right), 174.5\left(\mathrm{C}^{\prime}\right)$	
		125,131		125, 131								
15e (R = H)	39.6	51.7	265.4	51.7	39.6	31.1	31.1	37.9			$155.6\left(\mathrm{Cl}^{\prime}\right), 132.9\left(\mathrm{C}^{\prime}, 6^{\prime}\right)$,	
	d, 143	d,d		d,d	d, 143	t, 131	t, 131	t, 131			140.2 (C3',5'), 141.5 (C4')	
		125, 136		125, 136								
17	66.5	322.9	66.5	52.8	29.3	36.7						41.2
	d, 148		d, 148	t. 137	d, 137	t, 131						q, 132
18be ${ }^{\text {(}} \mathrm{R}=\mathbf{4}^{\prime}-\mathrm{OCH}_{3}$)	44.3	237.5		45.6	28.7	36.4					d	59.2
	d, 141			t, 135	d, 138							
18c ($\mathrm{R}=4^{\prime}-\mathrm{CH}_{3}$)	49.5	260.4		48.1	29.6	36.6						
	d, 140			t, 135	d, 136	t, 128						
18d ($\mathrm{R}=4^{\prime}-\mathrm{Cl}$)	51.8	268.2		49.7	30.0	36.7						
	d, 141			t, 135	d, 137	t, 129						
18e ($\mathrm{R}=\mathrm{H}$)	51.5	271.6		49.5	29.8	36.5						
	d, 142			t, 134	d, 135	t, 131						
$18 \mathrm{f}\left(\mathrm{R}=3^{\prime}-\mathrm{Cl}\right)$	54.2	277.2		51.6	30.2	36.7						
	d, 142			t, 135	d, 137	t, 133						
$18 i\left[\mathrm{R}=3^{\prime}, 5^{\prime}-\left(\mathrm{CF}_{3}\right)_{2}\right]$	58.7	286.2		54.3	31.1	37.1						122.9
	d, 145			t, 136	d, 136	t, 129						(q, 273)
19%	46.7	218.4	46.7	39.1	27.4	36.2						
	d, 137		d, 137	t, 129	d, 134	t, 129						
218	80.7	270.2	55.2	42.8	23.5	35.5	40.1					27.9
	d, 171		t, 133	d, 154	t, 137	$\begin{aligned} & \mathrm{d}, \mathrm{~d} \\ & 145,149 \end{aligned}$	t, 141					q, 132
22 ${ }^{\text {h }}$	49.8	215.3	45.2	35.4	27.3	24.2	36.7					
	d, 148		t, 133	d, 144	t, 132	t, 134	t, 135					
23	45.1	45.1	32.4	29.4	35.2	55.8	81.9	298.6	61.1	36.7		32.2
	d, 148	d, 148	t, 133	t, 128	t, 133	d, 152	d, 168		dd, 133	t, 126		q, 132
24	39.7	41.9	31.4	28.1	31.6	46.9	54.3	217.2	44.5	32.3		
	d, 146	d, 137	t, 132	t, 131	t, 132	d, 137	d, 149		dd, 133	t, 129		
25	81.8	200.3	57.9	42.4					54.3		132.7 (C5), 143.7 (C6), 125.3	26.7
	d, 178		dd, 137	d, 158					t, 140		$\text { (C7), } 150.9 \text { (C8), } 177.9$ $(\mathrm{C} 10), 105.4 \text { (C11) }$	q, 132
26	57.7	213.0	50.6	40.1					41.5		126.4 (C5), 121.3 (C6), 123.3	
	d, 154		dd, 138	d, 150					t, 138		$\begin{aligned} & (\mathrm{C} 7), 127.1(\mathrm{C} 8), 139.5 \\ & (\mathrm{C} 10), 148.4(\mathrm{C} 11) \end{aligned}$	
$\begin{gathered} 27 \mathrm{a}^{i}\left(\mathrm{R}=3^{\prime}, 4^{\prime}-\right. \\ \left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) \end{gathered}$	51.9	227.2	45.7	37.9	26.6	30.8	40.8				$136.1\left(\mathrm{Cl}^{\prime}\right), 138.4\left(\mathrm{C}^{\prime}\right), 129.4$	79.5
	d, 152		t, 132	d, 148	t, 136	t, 136	t, 138				$\left(\mathrm{C}^{\prime}\right), 183.4\left(\mathrm{C}^{\prime}\right), 115.4$ (C5'), $148.0\left(\mathrm{C}^{\prime}\right)$	$\begin{aligned} & \mathfrak{t}, 158 \\ & 27.0 \end{aligned}$
												t, 137
27b ($\mathrm{R}=4^{\prime}-\mathrm{F}$)	58.9	255.9	50.4	39.9	25.8	33.9	41.8				131.1 (Cl^{\prime}), 146.5 ${ }^{\text {(}}$ (16, C^{\prime}) ,	
	d, 157		t, 133	d, 153	t, 136	t, 140	t, 137				$121.2\left(23, C 33^{\prime}\right), 178.3$	
											C5'), 146.4 (16, ${ }^{\text {C6 }}$)	
27c ($\mathrm{R}=3^{\prime}-\mathrm{CH}_{3}$)	59.2	259.7	50.6	40.0	25.9	34.3	41.8				$134.2\left(\mathrm{Cl}^{\prime}\right), 139.4^{k}\left(\mathrm{C2}^{\prime}\right)$,	20.8
	d, 157		t, 133	d, 152	t. 136	t. 140	t, 137				$\begin{aligned} & 144.1\left({ }^{\left(C 3^{\prime}\right), 154.0}\left(\mathrm{CA}^{\prime}\right),\right. \\ & 132.6\left(\mathrm{C}^{\prime}\right), 141.4^{k}\left(\mathrm{C} 6^{\prime}\right) \end{aligned}$	q, 129
27d ($\mathrm{R}=3^{\prime}-\mathrm{Cl}$)	62.1	263.1	51.9	40.8	25.6	36.0	42.0				138.8 (Cl^{\prime}), 139.6 ${ }^{\text {(}} \mathrm{C2}^{\prime}$),	
	d, 160		t, 132	d, 152	t, 137	t, 144	t, 140				134.5 (C^{\prime}) , 150.4 ($\mathrm{C4}^{\prime}$),	
											133.7 (C5'), $139.9{ }^{\text {k }}$ ($\mathbf{C 6}^{\prime}$)	

Table I. (Continued)

cation	Cl	C2	C3	C4	C5	C6	C7	C8	C9	C10	aryl	CH_{3}
27e ($\mathrm{R}=\mathrm{H}$)	59.6	260.6	50.8	39.9	25.7	34.5	41.7				$\begin{gathered} 133.7\left(\mathrm{Cl}^{\prime}\right), 141.0^{k}\left(\mathrm{C}^{\prime}\right), \\ 132.6\left(\mathrm{C}^{\prime}\right), 152.4\left(\mathrm{C}^{\prime}\right) \\ 132.6\left(\mathrm{C} 5^{\prime}\right), 141.8^{k} \end{gathered}$	
	d, 158		t, 133	d, 153	t, 137	t, 142	t, 137					
27f($\left.\mathrm{R}=\mathbf{3}^{\prime}-\mathrm{CF}_{3}\right)$	63.3	264.3	52.4	41.1	25.5	36.6	42.1				133.0 (Cl^{\prime}), $143.2^{k}\left(\mathrm{C}^{\prime}\right)$,	$\begin{aligned} & 123.4, \\ & (\mathrm{q}, 273) \end{aligned}$
	d, 161		t, 133	d, 153	t, 136	t, 144	t. 140				$\begin{aligned} & 136.7\left(23, \mathrm{C} 3^{\prime}\right), 146.1\left(\mathrm{C} 4^{\prime}\right), \\ & 133.4\left(\mathrm{C} 5^{\prime}\right), 144.2^{k}\left(\mathrm{C} 6^{\prime}\right) \end{aligned}$	

[^2] reported here are for cations ($0.3-0.5 \mathrm{M}$) at $-40^{\circ} \mathrm{C}$ in $\mathrm{FSO}_{3} \mathrm{H} / \mathrm{SO}_{2} \mathrm{ClF} .{ }^{j}$ Couplings to ${ }^{19} \mathrm{~F}$ in parentheses. ${ }^{k}$ Assignments may be interchanged.
and 6-arylbicyclo[3.2.1]octyl cations (16h,i) by comparison of their ${ }^{13} \mathrm{C}$ shifts with literature values ${ }^{20.23}$ and direct generation. In addition, quenching of the cation solution prepared from 14h in methoxide/methanol yielded 2-methoxy-2-(4'-(trifluoromethyl)phenyl)bicyclo[2.2.2]octane identical to authentic material (Scheme I). The methyl ether of $\mathbf{1 4 h}$ was not detected (GLC) in the mixture.

2-Adamantyl Cations. Since both the tertiary 2-bicyclo[2.1.1]hexyl and 2-bicyclo[2.2.2]octyl cations 9 and 10 are associated with the possibility of distorted geometry $\left(\theta<90^{\circ}\right.$ for $\left.\mathrm{C}_{1} \mathrm{H}\right)$, we have examined data for the 2 -adamantyl cations ${ }^{23.24}$ in which steric strain/distortion should be minimized, if not absent. However, measurement of $J_{\mathrm{C}_{1} \mathrm{H}}$ for 17 gave 148 Hz , only 11 Hz

greater than that for the model ketone 19. This is half that predicted for a rigid, strain-free adamantyl structure with $\theta=$ 90° (eq 1). Since $J_{\mathrm{C}_{1} H}$ of $19(137 \mathrm{~Hz})$ is similar to other $\alpha-\mathrm{CH}$ couplings in bicyclic ketones, e.g. bicyclo[3.2.1]octan-2-one, 140 Hz , ${ }^{25}$ the low ΔJ value of 11 Hz is due to an anomalously low value in the cation 17. In the absence of significant delocalization of charge at C 2 by equilibration or bridging ($\delta_{\mathrm{C} 2}=323 \mathrm{ppm}^{26.27}$), or of second-order effects in the proton spectrum, ${ }^{28}$ the low value reflects a dihedral angle substantially less than 90°, i.e. ca. 54°. Such gross distortion from planarity at the cationic center to give essentially a pyramidal cation seems initially unlikely, but there is mounting, independent evidence to support this hypothesis.

Firstly, from a ${ }^{13} \mathrm{C}$ study of unsymmetrically substituted 2-adamantyl cations, 2,5-dimethyl-and 2,2,4-trimethyladamantyl, Sorensen et al. argued for a rapidly equilibrating pair of nonplanar

[^3]structures, on the bases of the temperature dependence of the (nonequivalent) β-carbons. They concluded, "distortions of up to $\pm 20^{\circ}$ do not seem unreasonable to us". ${ }^{29}$

Secondly, ab initio molecular orbital calculations support a C_{s} symmetric structure for the theoretical secondary 2 -adamantyl cation (20), in which the $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ bridge is bent toward the β-carbons of one side by 17° and the $\mathrm{C} 2-\mathrm{H}$ bond by a further 11° toward the same side. ${ }^{30}$
Thirdly, from an X-ray study of the SbCl_{5} complex of 5-phenyl-2-adamantanone, Laube concluded that distortion about the carbonyl bond was due to different electron distributions on the two sides as a result of $\mathrm{C}-\mathrm{C}$ hyperconjugation. ${ }^{31}$

Fourthly, independent studies by le Noble ${ }^{32}$ and Adcock ${ }^{33}$ of reactions of 5 -substituted-2-adamantyl derivatives, in which the ratio of Z / E products is influenced by the electron-donating ability of the 5 -substituent ($\mathrm{C}<\mathrm{Si}<\mathrm{Sn}$), support the capture of "pyramidal" 2-adamantyl cations.
Reduced values of ΔJ are also observed for the 2-aryl cations 18 where $J_{\mathrm{C}_{1} \mathrm{H}}$ varies by only 4 Hz from 141 Hz for $\mathrm{R}=4^{\prime}-\mathrm{CH}_{3} \mathrm{O}$ to 145 Hz for $\mathrm{R}=3^{\prime}, 5^{\prime}-\left(\mathrm{CF}_{3}\right)_{2}$, which suggests nonplanarity in this series of cations as well (Table I). The low value of $J_{\mathrm{C}_{l} \mathrm{H}}$ observed recently for the 2 -vinyl adamantyl cation ${ }^{34}$ is presumably due in part to charge delocalization ($\delta \mathrm{C}^{+} 283.5,18 \mathrm{e} 271.6$).

Bicyclo[2.2.1]heptyl Cations. The tertiary 2-methyl-2-norbornyl cation 21, although claimed to be a partially σ-bridged species with an unsymmetrical three-center, two-electron bond, ${ }^{35}$ appears to be a static, classical cation according to the ΔJ criterion. Thus ${ }^{1} J_{\mathrm{C}_{1} \mathrm{H}}$ increases by 23 Hz over that of 2 -norbornanone (22) ($\theta \sim 80^{\circ}$) and ${ }^{1} J_{\mathrm{C}_{3} \mathrm{H}}$ shows no enhancement as predicted for θ $=30^{\circ} .{ }^{2}$
In order to provide comparative data, we prepared the $5,6-$ disubstituted 2 -norbornyl cations 23 and 25 from the corresponding tertiary alcohols. Comparison with the ketones 24 and 26 gives ΔJ values for all three cations consistent with our predictions of the stereochemistry of the cations $\left(\mathrm{HCl}-\mathrm{C}^{+} \theta \sim\right.$ $80^{\circ}, \mathrm{HC} 3-\mathrm{C}^{+} \theta \sim 30^{\circ}$), $\Delta J_{\mathrm{C}_{1} \mathrm{H}}=19-24 \mathrm{~Hz}, \Delta J_{\mathrm{C}_{3} \mathrm{H}}=0-1 \mathrm{~Hz}$. Thus these three tertiary norbornyl cations 21, 23, 25 are all nonbridged ions according to this criterion. In the series of 2 -arylsubstituted norbornyl cations, $J_{\mathrm{C}_{1} \mathrm{H}}$ of 2-phenylnorbornyl 27 e is reduced from that in 21 by 13 Hz to $158 \mathrm{~Hz} .{ }^{3}$ A plot of $\Delta J_{\mathrm{C}_{1} \mathrm{H}}$
(29) Finne, E. S.; Gunn, J. R.; Sorensen, T. S. J. Am. Chem. Soc. 1987,
109, 7816-7823.
(30) Dutler, R.; Rauk, A.; Sorensen, T. S.; Whitworth, S. M. J. Am. Chem. Soc. 1989, 111, 9024-9029
(31) Laube, T.; Stilz, H. U. J. Am. Chem. Soc. 1987, 109, 5876-5878
(32) Hahn, J. M.; le Noble, W. J. J. Am. Chem. Soc. 1992, 114, $1916-$ 1917. Lin, M.-H.; Cheung, C. K.; le Noble, W. J. J. Am. Chem. Soc. 1988, 110, 6562-6563 and references therein.
(33) Adcock, W.; Coope, J.; Shiner, V. J.; Trout, N. A. J. Org. Chem. 1990, 55, 1411-1412. Adcock, W.; Trout, N. A. J. Org. Chem. 1991, 56 , 3229-3238.
(34) Prakash, G. K. S.; Reddy, V. P.; Rasul, G.; Casanova, J.; Olah, G. A. J. Am. Chem. Soc. 1992, 114, 3076-3078.
(35) (a) Olah, G. A. Acc. Chem. Res. 1976, 9, 41-52. (b) Forsyth, D. A.; Panyachotipun, C. J. Chem. Soc.. Chem. Commun. 1988, 1564-1566. (c) Baine, P.; Domenick, R. L.; Servis, K. L. Magn. Reson. Chem. 1987, 25 , 1035-1039. (d) Forsyth, D. A.; Botkin, J. H.; Puckace, J. S.; Servis, K. L.; Domenick, R. L. J. Am. Chem. Soc. 1987, 109, 7270-7276. (e) Lenoir, D.; Apeloig, Y.; Arad, D.; Schleyer, P. v. R.; J. Org. Chem. 1988, 53, 661-675.

against σ^{+}(or $\sigma^{\alpha \mathrm{C}}+$) for a complete range of substituents, ${ }^{36.37}$ $3,4-\mathrm{OCH}_{2} \mathrm{CH}_{2}$ to $3,5-\left(\mathrm{CF}_{3}\right)_{2}$, gives an excellent linear correlation with no deviation at high electron demand, unlike the case for the cationic carbon shifts (Figure 1). ${ }^{20.38}$ Thus no "onset" of bridging is detected with this probe. ${ }^{38.39}$

It is pertinent now to apply the ΔJ criterion to the parent secondary 2-norbornyl cation, the subject of intensive investigation and extensive review over many years. ${ }^{40}$ Relatively recent studies both theoretical ${ }^{41}$ and experimental ${ }^{42}$ support a single, symmetrical minimum energy structure (28) for the cation in superacid media.

28

29

At $-80^{\circ} \mathrm{C}$, the ${ }^{13} \mathrm{C}$ signal attributed to $\mathrm{C} 1,2,6$ of 28 at $\delta 91.7$ is a quintet with an unusually low J_{CH} value of $55.1 \mathrm{~Hz} .^{43}$ This has been interpreted as being due to equilibration of the three carbons and four hydrogen atoms. At $-159^{\circ} \mathrm{C}$ the cation is essentially 'frozen out' with C1,2 appearing as a doublet at $\delta 124$ with $J_{\mathrm{CH}}=188 \mathrm{~Hz}$ and C 6 as a triplet at $\delta 21.2$ with $J_{\mathrm{CH}}=147$ Hz . Estimation of $J_{\mathrm{C}_{1,2,6 \mathrm{H}}}$ at $-80^{\circ} \mathrm{C}[(2 \times 188+2 \times 147) / 12]$ reproduces the equilibrium value of J_{CH} almost exactly (55.8 Hz). ${ }^{43}$

Estimation of the average value for an assumed classical cation yields a different value. Using values for a secondary $\mathrm{C}^{+} \mathrm{H}(171$ Hz) and for C 1 H and C 6 H from 2-methylnorbornyl (171, 145/ $149 \mathrm{~Hz}),{ }^{2}$ the $J_{\mathrm{CH}}(\mathrm{av})$ is 53.0 Hz . Although this value is only 2.1 Hz different from the experimental value at $-80^{\circ} \mathrm{C}$, the difference is a result of averaging over four hydrogens and three carbons.

More convincing evidence for 28 may be elicited from consideration of $J_{\mathrm{C}_{1,2} \mathrm{H}}$ at $-159^{\circ} \mathrm{C}, 188 \mathrm{~Hz} .^{43}$ This represents a massive increase over $J_{\mathrm{C}_{1} \mathrm{H}}$ of 2-norbornanone (148 Hz), much greater than predicted by eq 1 , greater than those observed in $\pi \sigma$-bridged cations, and consistent with the idea of increasing

[^4]

Figure 1. Correlation of $\Delta J_{\mathrm{C}_{1}} \mathrm{H}$ with electron demand in 2-arylbicyclo[2.2.1] heptyl cations 27 (correlation coefficient 0.993 ; for $\sigma^{\alpha C+}, r=0.988$).
internal strain accompanying σ-bridge formation as originally proposed. ${ }^{44}$ In fact $J_{\mathrm{C}_{1,2}}$ has the same value as that for $\mathrm{C} 1,6$ in the 3 -methylnortricyclyl cation and is consistent with the formation of a three-membered ring bearing positive charge. Thus application of the ΔJ equation supports a σ-bridged nonclassical structure for the secondary 2 -norbornyl cation.

The ΔJ equation is thus useful in determining the structure of carbocations in superacids. Low values of ΔJ result from equilibration as in the case of $\mathbf{2}$ or from distortion of the idealized geometry. In the case of $\mathbf{1 7}$ this provides additional evidence to support a hypothesis that these cations are distorted significantly from sp^{2} toward sp^{3} (pyramidal) hybridization. Relatively high values of ΔJ are associated with the formation of nonclassical structures, as a result of π-bridging (4), $\pi \sigma$-bridging (6), or σ-bridging (28).

Experimental Section

NMR Spectra. The proton and carbon NMR spectra were recorded on a variety of instruments under conditions as described previously. ${ }^{5}$ Chemical shifts of cationic solutions in superacids were measured from external (capillary) Me4Si. Coupling constants ($\pm 1 \mathrm{~Hz}$) were measured by hand from expanded plots. In some cases of complex spectra, selective excitation (DANTE) or editing (coupled DEPT) techniques were employed to obtain $J_{C H}$ values from overlapping signals.
Synthesis. Bicyclo[3.2.1]octan-2-one, adamantanone (19), bicyclo-[3.3.1]nonan-9-one, 2 -norbornanone (22), and tricyclo[5.2.1.0 2.6] decan8 -one (24)48 were commercially available (Aldrich). Bicyclo [2.2.2]octan2 -one (12), ${ }^{45}$ bicyclo[3.2.1]octan-6-one, ${ }^{46}$ bicyclo[3.2.1] octan-3-one (13), ${ }^{47}$ and benzonorbornan-2-one (26) ${ }^{49}$ were prepared according to literature procedures.
3-Arylbicyclo[3.2.1]octan-3-ols were prepared from 13 by reaction with the appropriate arylmagnesium bromide, the unreacted ketone was removed under vacuum, and the products were recrystallized from petroleum ether $\left(60-80^{\circ} \mathrm{C}\right) .14 \mathrm{~b}$, white needles (43%), $\mathrm{mp} 84-85^{\circ} \mathrm{C}$, $\nu_{\max } 3460 \mathrm{~cm}^{-1} ; \delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.2-7.5(\mathrm{~m}, 4 \mathrm{H}), 3.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $1.5-2.8(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 35.0(\mathrm{~d}, \mathrm{C} 1,5), 47.3(\mathrm{t}, \mathrm{C} 2,4), 74.2(\mathrm{~s}$, C3), 28.4 (C6,7), 143.4 ($\mathrm{s}, \mathrm{C} 1^{\prime}$), 125.6 (d, C2 $2^{\prime}, 6^{\prime}$), 113.3 ($\left.\mathrm{d}, \mathrm{C} 3^{\prime}, 5^{\prime}\right)$, 157.9 (s, C4'), 55.1 (q, OCH_{3}); MS $m / z(\%) 232\left(\mathrm{M}^{+}, 40\right), 214(37)$, 185 (63), 150 (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 77.6 ; \mathrm{H}, 8.7$. Found: C, $77.6 ; \mathrm{H}, 8.8 .14 \mathrm{c}$, white plates $(64 \%), \mathrm{mp} 109-110^{\circ} \mathrm{C}$, $\nu_{\text {max }}$ $3460 \mathrm{~cm}^{-1} ; \delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.1-7.5(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.4-2.4(\mathrm{~m}$, ${ }_{11 \mathrm{H}) .} \delta^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 35.0(\mathrm{~d}, \mathrm{C} 1,5), 47.4$ (t, $\left.\mathrm{C} 2,4\right), 74.5(\mathrm{~s}, \mathrm{C} 3), 28.5$ (t, C6,7), 135.8 ($\mathrm{s}, \mathrm{C} 1^{\prime}$), 128.7 ($\mathrm{d}, \mathrm{C} 2^{\prime}, 6^{\prime}$), 124.4 (d, $\left.\mathrm{C}^{\prime}, 5^{\prime}\right), 148.2$ (s ,
(44) (a) Kelly, D. P.; Brown, H. C. J. Am. Chem. Soc. 1975, 97, 38973900. (b) Olah, G. A.; Kelly, D. P.; Jeuell, C. J.; Porter, R. D. J. Am. Chem. Soc. 1970, 92, 2544-2548.
(45) Alder, K.; Krieger, H.; Weiss, H. Chem. Ber. 1955, 88, 144-155. Freeman, P. K.; Nalls, D. M.; Brown, D. J. J. Org. Chem. 1968, 33, $2211-$ 2214. Mislow, K.; Berger, J. G. J. Am. Chem. Soc. 1962, 84, 1956-1961.
(46) Ipatieff, V. N.; Germain, J. E.; Thompson, W. W.; Pines, A. J. Org. Chem. 1952, 17, 272-285.
(47) Kraus, W.; Klein, G.; Sadlo, H.; Rothenwahrer, W. Synthesis 1972, 485-487.
(48) Brown, H. C.; Vander Jagt, D. L.; Schleyer, P. v. R.; Fort, R. C.; Watts, W. E. J. Am. Chem. Soc. 1969. 91, 6848-6850.
(49) Müller, P.; Blanc, J. Helv. Chim. Acta 1979, 62, 1980-1984.

Table II. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts for 2-Arylbicyclo[2.2.2]octan-2-ols

aryl substituent	Cl	C2	C3	C4	C5	C6	C7	C8	Cl^{\prime}	C2 ${ }^{\prime}$	C3 ${ }^{\prime}$	C4'	C5 ${ }^{\prime}$	C6'	CX
$3^{\prime}, 4^{\prime}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{\text {a }}$	32.5	132.5	121.4	30.5	25.8	26.9	25.8	26.9	144.6	124.5	127.1	159.1	109.1	126.8	29.9
															71.3
$4^{\prime}-\mathrm{OMe}^{a}$	32.2	132.3	127.2	30.4	25.9	26.2	25.9	26.2	144.2	125.7	113.8	158.5	113.8	125.7	55.3
$4^{\prime}-\mathrm{Me}$	35.9	74.9	42.1	26.0	21.1	24.3	22.5	25.1	136.4	128.7	125.9	145.1	125.9	128.7	20.9
$4^{\prime}-\mathrm{Cl}$	35.9	74.7	42.0	25.7	20.9	24.0	22.2	24.9	132.4	127.9	127.5	146.4	127.5	127.4	
H	35.9	75.1	42.0	25.9	21.1	24.2	22.4	25.1	148.0	128.0	126.0	126.6	126.0	128.0	
$3^{\prime}-\mathrm{Cl}$	35.9	74.9	42.0	25.7	21.0	24.1	22.2	24.9	150.2	$126.5{ }^{\text {b }}$	134.0	$129.2{ }^{\text {b }}$	124.2	$126.9{ }^{\text {b }}$	
$4^{\prime}-\mathrm{CF}_{3}$	36.0	74.9	41.9	25.7	20.8	23.8	22.1	24.7	152.1	126.4	125.3	129.0	125.3	126.4	124.5

${ }^{a}$ Alkene. ${ }^{b}$ Assignments may be interchanged.
$\left.\mathrm{C}^{\prime}\right), 20.8\left(\mathrm{q}, \mathrm{CH}_{3}\right) . \mathrm{MS} m / z(\%) 216\left(\mathrm{M}^{+}, 34\right), 201(42), 134$ (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$: C, 83.3; $\mathrm{H}, 9.3$. Found: C, 83.5, H 9.0. 14e, white plates (77%), $\mathrm{mp} 80-81^{\circ} \mathrm{C}, \nu_{\text {max }} 3460,3020 \mathrm{~cm}^{-1} ; \delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right)$ $7.2-7.5(\mathrm{~m}, 5 \mathrm{H}), 1.5-2.8(\mathrm{~m}, 12 \mathrm{H}) . \delta^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 35.0(\mathrm{~d}, \mathrm{C} 1,5), 47.4$ (t, C2,4), 74.6 (s, C3), 28.5 (t, C6,7), 38.6 (t, C8), 151.1 (s, C1'), 128.0 (d, C2 $\left.{ }^{\prime}, 6^{\prime}\right), 123.5\left(\mathrm{~d}, \mathrm{C}^{\prime}, 5^{\prime}\right), 126.2$ (d, C4'). MS $m / z(\%) 202\left(\mathrm{M}^{+}, 36\right)$, 173 (9), 159 (15), 145 (10), 120 (100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}$, 83.1; H, 9.0. Found: C, 83.7 ; H, 8.5. 14g, white plates (35%), mp $67-68$ ${ }^{\circ} \mathrm{C}, \nu_{\max } 3460,3040 \mathrm{~cm}^{-1} ; \delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.3-7.8(\mathrm{~m}, 4 \mathrm{H}), 1.5-2.5(\mathrm{~m}$, $\left.{ }^{12} \mathrm{H}\right) . \delta{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 35.0(\mathrm{~d}, \mathrm{C} 1,5), 47.5(\mathrm{t}, \mathrm{C} 2,4), 74.5(\mathrm{~s}, \mathrm{C} 3), 28.5$ (t, C6,7), $38.5(\mathrm{t}, \mathrm{C} 8), 152.2\left(\mathrm{~s}, \mathrm{Cl}^{\prime}\right), 123.3$ (q, C^{\prime} or 4^{\prime}), $129.5\left(\mathrm{~s}, \mathrm{C}^{\prime}\right)$, 121.6 ($\mathrm{q}, \mathrm{C} 4^{\prime}$ or 2^{\prime}), $128.0\left(\mathrm{~d}, \mathrm{C} 5^{\prime}\right.$ or 6^{\prime}), 128.6 (d, C6 6^{\prime} or 5^{\prime}), 124.4 (q, CF_{3}). MS $m / z(\%) 270\left(\mathrm{M}^{+}, 32\right), 252$ (15), 227 (12), 201 (10), 189 (31), 188 (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{OF}_{3}$: $\mathrm{C}, 66.7 ; \mathrm{H}, 6.3$. Found: C, 67.3; H, 6.3. 14h, pale-yellow needles (52%), mp $122^{\circ} \mathrm{C}$, $\nu_{\text {max }} 3460$ $\mathrm{cm}^{-1} ; \delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.56(\mathrm{~s}, 4 \mathrm{H}), 1.6-2.4(\mathrm{~m}, 12 \mathrm{H}) . \delta^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 34.9$ (d, C1,5), 47.5 (t, C2,4), 74.8 (s, C3), 28.5 (t, C6,7), 38.6 (t, C8), 155.0 (s, C1'), 125.1 (d, C2',6'), 124.9 (d, C $3^{\prime}, 5^{\prime}$), 129.3 (s, C4'), 124.3 (q, CF_{3}). MS m / z (\%) 270 ($\mathbf{M}^{+}, 29$), 201 (42), 187 (10), 173 (15), 169 (11), 134 (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{OF}_{3}$: $\mathrm{C}, 66.7 ; \mathrm{H}, 6.3$. Found: C, 67.0; H, 6.4.

2-Arylbicyclo[2.2.2]octan-2-ols were prepared from 12 by reaction with the appropriate aryl magnesium bromide. Distillation and/or recrystallization gave the required alcohol. Some products were contaminated by the corresponding olefin, a result of dehydration during purification procedures. For the purposes of cation generation, however, the presence of alcohol/olefin mixtures can be tolerated, since both afford the same cation upon protonation in superacid media. The ${ }^{13} \mathrm{C}$ chemical shifts for the 2-arylbicyclo[2.2.2]octan-2-ols are presented in Table II. Apart from the 2 -($3^{\prime}, 4^{\prime}$-ethyleneoxyphenyl) derivative, the 2 -arylbicyclo[2.2.2]octanols have been described previously. ${ }^{21}$

2-(3',4'-(Ethyleneoxy) phenyl) bicyclo[2.2 .2]oct-2-ene was prepared by reaction of 12 with 5-lithio-2,3-dihydrobenzofuran, ${ }^{50}$ followed by workup and dehydration. Distillation afforded the title compound as a viscous yellow oil, bp $125-135^{\circ} \mathrm{C} / 0.3 \mathrm{mmHg}, \nu_{\max } 2850,1590,1470,1210 \mathrm{~cm}^{-1}$; $\delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.1(\mathrm{~d}, 2 \mathrm{H}), 6.7(\mathrm{~s}, 1 \mathrm{H}), 6.3(\mathrm{~d}, 1 \mathrm{H}), 4.5(\mathrm{t}, 2 \mathrm{H}), 3.1(\mathrm{t}$, $2 \mathrm{H}), 1.2-1.9(\mathrm{~m}, 10 \mathrm{H})$

2-(4'-Methoxyphenyl)bicyclo[2.2.2]octan-2-ol, ${ }^{51,52}$ after distillation a yellow oil, bp $110-120{ }^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}, \nu_{\max } 3400 \mathrm{~cm}^{-1}$. 2-(4'-Methylphenyl)bicyclo[2.2.2]octan-2-ol, ${ }^{51,52}$ after distillation an oil, bp 123$125^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}, \nu_{\max } 3400,2920 \mathrm{~cm}^{-1} ; \delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 6.9-7.4(\mathrm{~m}$, $4 \mathrm{H}), 2.3(\mathrm{~s}, 3 \mathrm{H}), 1.0-1.9(\mathrm{~m}, 12 \mathrm{H})$. 2-(4'-Chlorophenyl)bicyclo[2.2.2]-octan-2-ol,,32 after distillation a viscous oil, bp $125-135^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$ (lit. $\left.{ }^{52} 125-145^{\circ} \mathrm{C} / 3 \mathrm{mmHg}\right), \nu_{\max } 3380,2920 \mathrm{~cm}^{-1} ; \delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.1-$ 7.4 (m, 4H), 1.3-2.5 (m, 12H). 2-Phenylbicyclo[2.2.2]octan-2-ol,51.52 after distillation a viscous oil, bp $95-100^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}$ (lit. ${ }^{52}$ 135-152 $\left.{ }^{\circ} \mathrm{C} / 15 \mathrm{mmHg}\right), \nu_{\max } 3380,2920 \mathrm{~cm}^{-1} ; \delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.1-7.5(\mathrm{~m}, 5 \mathrm{H})$, 1.3-2.5 (m, 12H). 2-(3'-Chlorophenyl)bicyclo[2.2.2]octan-2-ol,,32 after distillation a viscous oil, bp $115-120^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$ (lit. ${ }^{52} 60^{\circ} \mathrm{C} / 0.3$ mmHg , molecular distillation), $\nu_{\max } 3350,2900 \mathrm{~cm}^{-1} ; \delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.0-$ $7.5(\mathrm{~m}, 4 \mathrm{H}), 1.2-2.5$ (m, 12H). 2-(4'-(Trifluoromethyl)phenyl)bicyclo-

[^5][2.2.2]octan-2-ol, ${ }^{51.53}$ after distillation a viscous oil, bp $110-120^{\circ} \mathrm{C} / 2$ $\mathrm{mmHg}, \nu_{\max } 3300,2950 \mathrm{~cm}^{-1} ; \delta^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.2-7.8(\mathrm{~m}, 4 \mathrm{H}), 1.1-2.7$ ($\mathrm{m}, 12 \mathrm{H}$).

The syntheses of the 2 -aryltricyclo[3.3.1.1 $1^{3,7}$ decan-2-ols, precursors of cations 18, have been reported in the literature. ${ }^{24,37.54}$ Previously unreported ${ }^{13} \mathrm{C}$ NMR chemical shifts for these alcohols are tabulated in the supplementary material.

8-Methyl-2,6-exo-8-endo-tricyclo[5.2.1.026 ${ }^{2}$ decanol was prepared from ketone 24 by treatment with methylmagnesium iodide. Recrystallization (pentane) yielded the alcohol as white needles, mp $79-81^{\circ} \mathrm{C}$ (lit. ${ }^{48} 81.5-$ $\left.82{ }^{\circ} \mathrm{C}\right), \delta{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 27.9(\mathrm{C} 4), 30.3\left(\mathrm{CH}_{3}\right), 31.7(\mathrm{C} 3), 32.4(\mathrm{C10})$, 32.6 (C5), 39.2 (C2), 41.7 (C6), 46.5 (C9), 46.7 (C1), 52.7 (C7), 76.9 (C8).

The syntheses of the alcohol precursors to cations 27a-e have been reported. ${ }^{20.50 .52}$ However, we now quote the previously unreported ${ }^{13} \mathrm{C}$ NMR spectral data for the following alcohols:
2-(3',4'-(Ethyleneoxy)phenyl)-2-endo-bicyclo[2.2.11 heptanol, after distillation and recrystallization, a white solid, $\mathrm{mp} 71-74^{\circ} \mathrm{C}$ (lit. $\mathrm{C}^{50} 75-76$ ${ }^{\circ} \mathrm{C}$); $\delta{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 22.2$ (C5), 29.7 (C6), 37.6 (C4), 38.7 (C7), 46.7 (C3), 47.3 (C 1), $80.6(\mathrm{C} 2), 29.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 71.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 108.4$ (C5'), 122.8 (C2'), 125.4 (C^{\prime}), 126.9 (C^{\prime}), 141.4 (Cl^{\prime}), 158.8 (C^{\prime}).

2-(4'-Fluorophenyl)-2-endo-bicyclo[2.2.1] heptanol as white crystals, $\mathrm{mp} 63-64^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{52} 63-64^{\circ} \mathrm{C}\right) \delta^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 47.4$ (C1), 80.4 (C2), 46.9 (C3), 37.6 (C4), 22.3 (C5), 29.0 (C6), 38.7 (C7), 144.9 (C1'), 127.6 ($\mathrm{C} 2^{\prime}, 6^{\prime}$), 114.9 ($\mathrm{C}^{\prime}, 5^{\prime}$), 161.6 (C^{\prime}).
2-(3'-Methylphenyl)-2-endo-bicyclo[2.2.1]heptanol as white crystals, $\mathrm{mp} 57-58^{\circ} \mathrm{C} ; \delta^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 47.2$ (C1), 80.7 (C2), 46.5 (C3), 37.5 (C4), 22.2 (C5), 29.1 (C6), 38.7 (C7), 137.8 (C1'), 126.7 (C2'), 149.0 (C3), 128.1 (C4'), 122.7 (C5'), 127.5 (C^{\prime}), $21.6\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 83.1$; H, 9.0. Found: C, 83.5; H, 9.1.
2-(3'-Chlorophenyl)-2-endo-bicyclo 2.2 .1 heptanol as white crystals, $\mathrm{mp} 39-41^{\circ} \mathrm{C}\left(\mathrm{lit} \mathrm{t}^{52} 42-44^{\circ} \mathrm{C}\right) ; \delta^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 47.3$ (C1), 80.5 (C2), 46.8 (C3), 37.6 (C4), 22.3 (C5), 28.9 (C6), 38.8 (C7), 158.2 (C1'), 126.4 (C2'), 134.1 (C^{\prime}), 129.5 (C^{\prime}), 124.1 (C^{\prime}), 126.9 (C^{\prime}).
2-Phenyl-2-endo-bicyclo[2.2.1] heptanol as white crystals, mp 40-42 ${ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{52} 41-42^{\circ} \mathrm{C}\right) ; \delta^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) 47.3$ (C1), 80.8 (C2), 46.7 (C3), 37.7 (C4), 22.5 (C5), 29.3 (C6), 39.0 (C7), 149.2 (Cl^{\prime}), 128.4 ($\left.\mathrm{C}^{\prime}, 6^{\prime}\right), 126.1$ ($\mathrm{C}^{\prime}, 5^{\prime}$), 126.9 (C^{\prime}).
2-(3'-(Trifluoromethyl) phenyl)-2-eado-bicyclo[2.2 .1]heptanol as white crystals, mp $47-48^{\circ} \mathrm{C} ; \delta^{13} \mathrm{C}$ (CDCl ${ }_{3}$) 47.4 (C1), 80.6 (C2), 46.9 (C3), 37.6 (C4), 22.2 (C5), 28.9 (C6), 38.8 (C7), 150.0 (C1'), 122.8 (q, 3, C2'), 130.5 (q, 32, C3'), 123.6 (q, 4.4, C4'), 128.7 (C5'), 129.5 (C6'), 124.4 (q, 273, CF_{3}). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{OF}_{3}: \mathrm{C}, 65.6 ; \mathrm{H}, 5.9 ; \mathrm{F}$, 22.2. Found: C, 65.9; H, 6.1; F, 22.4.

Acknowledgment. This work was supported by the Australian Research Grants Committee.

Supplementary Material Available: Table of ${ }^{13} \mathrm{C}$ chemical shifts of 2-aryltricyclo[3.3.1.1 ${ }^{3.7}$]decan-2-ols (2 pages). Ordering information is given on any current masthead page.

[^6]
[^0]: - Abstract published in Advance ACS Abstracts. October 15, 1993.
 (1) Part 6: Keily, D. P.; Banwell, M. G.; Ireland, N. K.; Noel, A. L J. Org. Chem. 1991, 56, 2040-2045.
 (2) Kelly, D. P.; Underwood, G. R.; Barron, P. F. J. Am. Chem. Soc. 1976, 98, 3106-3111.
 (3) Kelly, D. P.; Farquharson, G. J.; Giansiracusa, J. J.; Jensen, W. A.; Hügel, H. M.; Porter, A. P.; Rainbow, I. J.; Timewell, P. H. J. Am. Chem. Soc. 1981, 103, 3539-3543.
 (4) Kelly, D. P.; Leslie, D. R.; Smith, B. D. J. Am. Chem. Soc. 1984, 106, 687-694.
 (5) Kelly, D. P.; Giansiracusa, J. J.; Leslie, D. R.; McKern, I. D.; Sinclair, G. C. J. Org. Chem. 1988, 53, 2497-2504.
 (6) For a review see: Kelly, D. P. In Advances in Carbocation Chemistry: Coxon, J. M., Ed.; JaI Press: New York, Vol. 2, in press.

[^1]: (7) Hansen, P. E. Prog. Nucl. Magn. Reson. Spectrosc. 1984, 14, 175-296.
 (8) Olah, G. A.; Liang, G. J. Am. Chem. Soc. 1976, 98, 7026-7033.
 (9) Olah, G. A.; Liang, G. J. Am. Chem. Soc. 1975, 97, 6803-6806.
 (10) Cheremisin, A. A.; Schastnev, P. V. Org. Magn. Reson. 1980, 14, 327-336.
 (11) Laube, T. J. Am. Chem. Soc. 1989, 111, 9224-9232.
 (12) Bremer, M.; Schötz, K.; Schleyer, P. v. R.; Fleischer, U.; Schindier, M.; Kutzelnigg, W.; Koch, W.; Pulay, P. Angew. Chem., Int. Ed. Engl. 1989, 28, 1042-1044.

[^2]: ${ }^{a}$ Chemical shifts $\pm 0.1 \mathrm{ppm}$ from external (capillary) $\mathrm{Me}_{4} \mathrm{Si}$ for cations and internal $\mathrm{Me}{ }_{4} \mathrm{Si}$ for neutral compounds; coupling constants (${ }^{1} \mathrm{~J}_{\mathrm{CH}}$) \pm $1 \mathrm{~Hz} .{ }^{b}$ From ref $5 .{ }^{c}$ Complex spectra due to mixtures of cations, for both 11 h and 11 i . ${ }^{d} \mathrm{~A}$ complete set of ${ }^{13} \mathrm{C}$ chemical shift data appears in ref 24. ${ }^{-} J_{C H}$ values have been reported for other aryl cations in ref 3. ${ }^{f}$ Chemical shifts for 19 have been reported previously, see: Hawkes, G. E.; Herwig, K.; Roberts, J. D. J. Org. Chem. 1974, 39, 1017. ${ }^{\text {g From ref } 2 . ~}{ }^{h}$ From ref $3 .{ }^{i}$ Data for other cations in this series have been reported, see ref 3 . Values

[^3]: (23) Olah, G. A.; Liang, G.; Mateescu, G. D. J. Org. Chem. 1974, 39, 3750-3754.
 (24) Kelly, D. P.; Jenkins, M. J.; Mantello, R. A. J. Org. Chem. 1981, 46, 1650-1653.
 (25) Other examples include the following. (a) $J_{\mathrm{C}_{5} \mathrm{H}}$ for bicyclo[3.2.1]octan-6-one $\delta(J) 18.8(\mathrm{t}, 129 \mathrm{~Hz}, \mathrm{C} 3), 30.5[\mathrm{t}, 130 \mathrm{~Hz}, \mathrm{C} 2(\mathrm{C} 4)], 30.7[\mathrm{t}, 130 \mathrm{~Hz}$, C4 (C2)], 32.2 (d, $138 \mathrm{~Hz}, \mathrm{C}$) , 37.2 (t. $133 \mathrm{~Hz}, \mathrm{C} 8$), 43.6 (t, $128 \mathrm{~Hz}, \mathrm{C} 7$), 46.2 (d, $136 \mathrm{~Hz}, \mathrm{C} 5$), 222.3 (s, C6). Chemical shifts have been reported previously: Grover, S. H.; Marr, D. H.; Stothers, J. B.; Tan, C. T. Can. J. Chem. 1975, 53, 1351-1361. (b) $J_{\mathrm{C}_{1} \mathrm{H}}$ for bicyclo[3.2.1] octan-2-one $\delta(J) 27.7$ (t, $127 \mathrm{~Hz}, \mathrm{C} 6,7$), 31.8 (t, $124 \mathrm{~Hz}, \mathrm{C} 4$), 33.7 (d, $136 \mathrm{~Hz}, \mathrm{C} 5$), 34.5 (t, 135 $\mathrm{Hz}, \mathrm{C} 3$), 38.0 (t, $132 \mathrm{~Hz}, \mathrm{C} 8$), $51.0(\mathrm{~d}, 140 \mathrm{~Hz}, \mathrm{Cl}), 215.0$ (s, C2). Chemical shifts have been reported previously: Lippmaa, E.; Pehk, T.; Belikova, N. A.; Bobyleva, A. N.; Kalinichenko, A. N.; Ordubadi, M. D.; Platé, A. F. Org. Magn. Reson. 1976, 8, 74-78. (c) $J_{\mathrm{C}_{1} \mathrm{H}}$ for bicyclo[3.3.1]nonan-9-one $\delta(J)$ 20.5 (t, $128 \mathrm{~Hz}, \mathrm{C} 3,7$), 34.2 (t, $130 \mathrm{~Hz}, \mathrm{C} 2,4,6,8$), 46.5 (d, 135, C1,5), 221.9 (s, C9). Chemical shifts have been reported previously: Peters, J. A.; van der Toorn, J. M.; van Bakkum, H. Tetrahedron 1977, 33, 349-351. Schneider, H.-J.; Lonsdorfer, M.; Weigand, E. F. Org. Magn. Reson. 1976, 8, 363-367. (26) Kelly, D. P.; Brown, H. C. Aust. J. Chem. 1976, 29, 957-965.
 (27) Schleyer, P. v. R.; Lenoir, D.; Mison, P.; Liang, G.; Prakash, G. K. S.; Olah, G. A. J. Am. Chem. Soc. 1980, 102, 683-691.
 (28) The possibility, that strong interproton coupling may give rise to secondorder effects in the proton-coupled ${ }^{13} \mathrm{C}$ NMR spectrum, was checked by measurement of J_{CH} at a higher field strength. The ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ spectrum of 17 gave $J_{\mathrm{C}_{1} \mathrm{H}}=148 \mathrm{~Hz}$ at 50 MHz and 147 Hz at 25 MHz .

[^4]: (36) J_{CH} values for some of these cations have been reported previously. ${ }^{3}$ Additional data are provided in Table I.
 (37) Giansiracusa, J. J.; Jenkins, M. J.; Kelly, D. P. Aust. J. Chem. 1982, 35, 443-450.
 (38) (a) Olah, G. A.; Prakash, G. K. S.; Farnum, D. G.; Clausen, T. P. J. Org. Chem. 1983, 48, 2146-2151. (b) Olah, G. A.; Prakash, G. K. S.; Liang, G. A. J. Am. Chem. Soc. 1977, 99, 5683-5687.
 (39) Farnum, D. G.; Wolf, A. D. J. Am. Chem. Soc. 1974, 96, 5166-5175. (40) For reviews, see: (a) Grob, C. A. Acc. Chem. Res. 1983, 16, 426-431. (b) Brown, H. C. Acc. Chem. Res. 1983, 16, 432-440. (c) Olah, G. A.; Prakash, G. K. S.; Saunders, M. Acc. Chem. Res. 1983, 16, 440-448. (d) Walling, C. Acc. Chem. Res. 1983, 16, 448-454.
 (41) (a) Saunders, M.; Johnson, C. S. J. Am. Chem. Soc. 1987, 109, 44014402. (b) Koch, W.; Liu, B.; De Frees, D. J. J. Am. Chem. Soc. 1989, 111 , 1527-1528.
 (42) (a) Myhre, P. C.; Webb, G. G.: Yannoni, C. S. J. Am. Chem. Soc. 1990, 112, 8991-8992. (b) Laube, T. Angew. Chem.. Int. Ed. Engl, 1987, 26, 560-562.
 (43) Olah, G. A.; Prakash, G. K. S.; Arvanghi, M.; Anet, F. A. L. J. Am. Chem. Soc. 1982, 104, 7105-7108.

[^5]: (50) Brown, H. C.; Gundu Rao, C. J. Org. Chem. 1979, 44, 133-136.
 (51) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for this alcohol are available as supplementary material from: Forsyth, D. A.; Panyachotipun, Y. P.; Moussa, A. M.; Youssef, A.-H. A. J. Org. Chem. 1990, 55, 5375-5386.
 (52) The preparation of this compound (or the corresponding olefin) has been previously reported, and selected physical data are available: Farnum, D. G.; Wolf, A. D. J. Am. Chem. Soc. 1974, 96, 5166-5175.

[^6]: (53) The preparation of this compound has been previously reported, and selected physical data are available: Wolf, A. D.; Farnum, D. G. J. Am. Chem. Soc. 1974, 96, 5176-5181.
 (54) Liu, K.-T.; Sheu, H.-C. J. Org. Chem. 1991, 56, 3021-3025. Krishnamurthy, V. V.; Iyer, P.S.; Olah, G. A. J. Org. Chem. 1983, 48, 33733378. Duddeck, H.; Hollowood, F.; Karim, A.; McKervey, M. A. J. Chem. Soc., Perkin Trans. 2 1979, 360-365.

